Sensing is life

CALL OSRAM

A 1.2K dots dToF 3D Imaging System in 45/22nm 3D-stacked BSI SPAD CMOS

ISSW 2022 workshop

<u>Pierre-Yves Taloud</u>¹, Stefan Bernhard ², Alice Biber¹, Michael Boehm², Pandi Chelvam⁴, Arnel Cruz⁴, Andrea Di Chele¹, Radoslaw Gancarz¹, Kotaro Ishizaki¹, Philipp Jantscher², Thomas Jessenig², Robert Kappel², Lin Lin¹, Scott Lindner¹, Hiwa Mahmoudi², Ahmad Makkaoui², Javier Miguel¹, Preethi Padmanabhan¹, Loic Perruchoud³, Daniele Perenzoni ⁵, Georg Roehrer², Andre Srowig¹, Bruno Vaello ¹, David Stoppa ⁵

¹ ams OSRAM 91, 8803 Rueschlikon, Switzerland

³ ams OSRAM, Rue du Collège 7, 1920 Martigny, Switzerland

⁵ former colleagues from ams OSRAM, now in Sony/Italy

² ams OSRAM, Tobelbader Strasse 30, 8141 Premstaetten, Austria ⁴ ams OSRAM, 7000 Ang Mo Kio Avenue 5, #05-00, Singapore

*Tel: +41794558463, e-mail: pierre-yves.taloud@ams-osram.com

20/05/2022

1 ISSW 2022

- 1. ams OSRAM overview
- 2. 3D sensing use cases
- 3. System
- 4. Camera
- 5. Laser
- 6. Firmware
- 7. Application
- 8. Performance results
- 9. Power results
- 10. Conclusion and thanks

1. ams OSRAM overview

- 2. 3D sensing use cases
- 3. System
- 4. Camera
- 5. Laser
- 6. Firmware
- 7. Application
- 8. Performance results
- 9. Power results
- 10. Conclusion and thanks

ams OSRAM at a glance

5.04bn

EUR revenues 2021

5,500+

Engineers

20,000+

Customers

~24,000

Employees worldwide

~40/33/27%

Automotive/Industrial and Medical/Consumer revenue split FY 2021 40+

Major R&D locations

15,000+

Patents granted and applied for

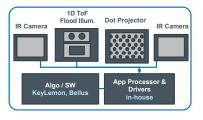
110+

Years design + manufacturing Vision and mission for ams OSRAM To create the uncontested leader in optical solutions

Sensing

Illumination

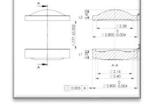
Visualization



Become the uncontested leader in optical solutions through bold investments in disruptive innovation and continuous transformation delivering best in class profitability and growth

ams OSRAM | 3D Components, Sensing Modules & Solutions

ams technology portfolio allow unique differentiation in 3D sensing

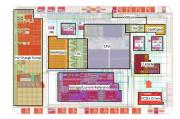


System Design

- in-house system design
- Qualcomm partnership for Android integration

Middleware & 3D algorithms

depth maps, face recognition,



Optics

- extensive design know-how
- refractive & diffractive optics
- WLO manufacturing technology

machine learning feedback to component & system design

Deep sub-micron CMOS design

- in-house design capabilities
- pixel IPs (SPAD,TDC, global shutter)
- driver IPs (high power, short pulse)

PCX/MRP GLASS

Packaging & Eye Safety

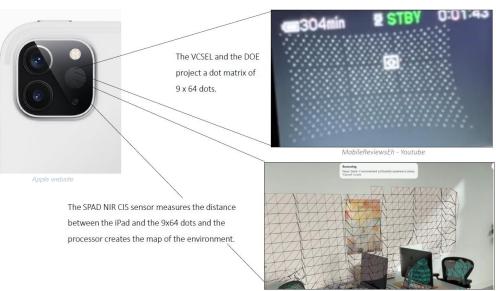
- miniature, compact modules
- unique, integrated eye safety methods

VCSELs

- in-house design & fabrication
- best in class efficiency

- 1. ams OSRAM overview
- 2. 3D sensing use cases
- 3. System
- 4. Camera
- 5. Laser
- 6. Firmware
- 7. Application
- 8. Performance results
- 9. Power results
- 10. Conclusion and thanks

3D use cases | mobile phones


World-facing 3D use cases

AR/VR use cases | 3D sensing enabling AR technology

Requirements for AR 3D depth camera

- 1. High quality depth map
 - High accuracy + low noise + high confidence
 - Over a useful distance and ambient light range
- 2. Low power operation
 - Continuous streaming operation
 - Allowing useful battery run time
- 3. Stable frame rate
 - Allowing image fusion with other cameras
 - High frame rate decrease reconstruction time
- 4. Relative high spatial resolution (independent of number of depth points)
 - Better capturing edges and small objects
 - Accumulation of depth points by intrinsic scanning

Apple LiDAR technology

Apple Website

- 1. ams OSRAM overview
- 2. 3D sensing use cases
- 3. System
- 4. Camera
- 5. Laser
- 6. Firmware
- 7. Application
- 8. Performance results
- 9. Power results
- 10. Conclusion and thanks

dToF system architecture overview | AR/VR markets and requirements

Full dTOF system enabling AR / VR experience

Continuation of the work presented in IISW21 by David Stoppa [1]

Main features

- Modular dTOF architecture
- Sparse QVGA (1200 depth points)
- Long-distance and high accuracy range sensing
- Hardware enhanced configurable integration time control
- Dot illumination for superior ambient light rejection
- Flexible architecture with embedded processing
- Depth image output without external post-processing
- Data interfaces i2C, MIPI

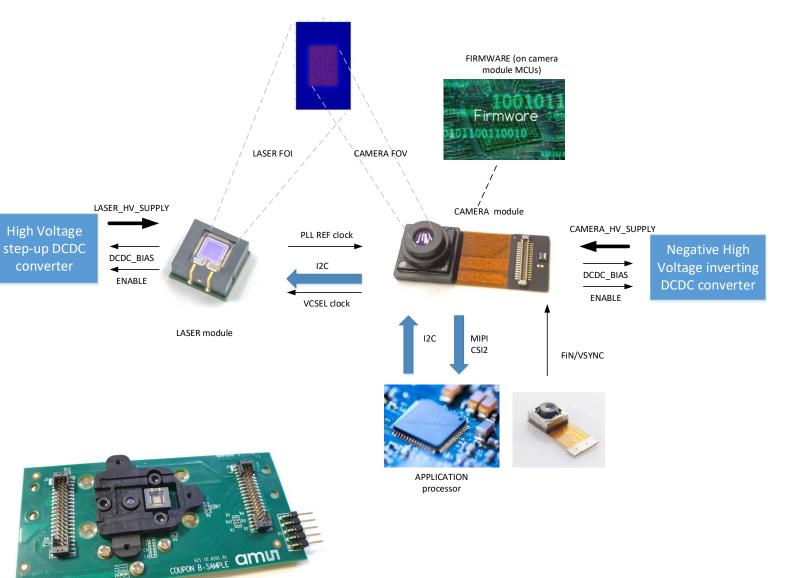
Applications

- Augmented Reality, Virtual Reality
- Photo enhancement (bokeh, autofocus)

Parameter	Specification			
XY-Resolution	Sparse QVGA (1200 depth points)			
Z-precision / accuracy	< 0.5% / < 3% @ full range			
Range	> 5m @ 60kLux, >8m @ 1kLux			
Frame rate	Up to 60 fps			
Total power	< 300mW @ 30fps			
Data Interface	I2C, MIPI			

am OSRAM

dToF system architecture overview | system block diagram


Application block diagram

System

- Camera module
 - CMOS sensor
 - High brightness NIR optics
 - Flash memory
- Laser module
 - BCD laser driver
 - multiple junction VCSEL array stacked on laser driver
 - Micro lens array for dot illumination with resistive interlock for eye safety

Peripheral components

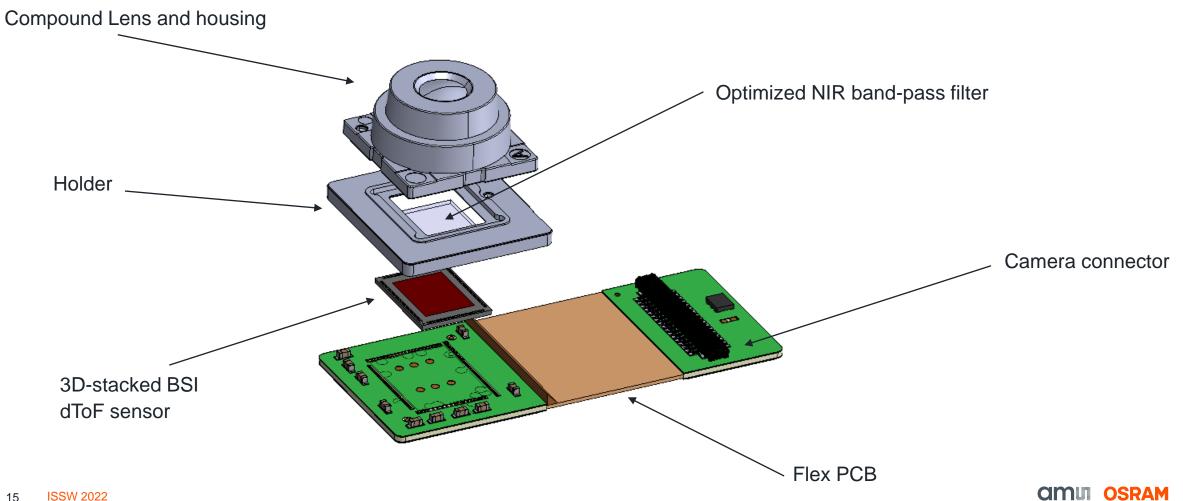
- Laser High voltage DCDC converter
- Spad High Voltage DCDC converter

- 1. ams OSRAM overview
- 2. 3D sensing use cases
- 3. System
- 4. Camera
- 5. Laser
- 6. Firmware
- 7. Application
- 8. Performance results
- 9. Power results
- 10. Conclusion and thanks

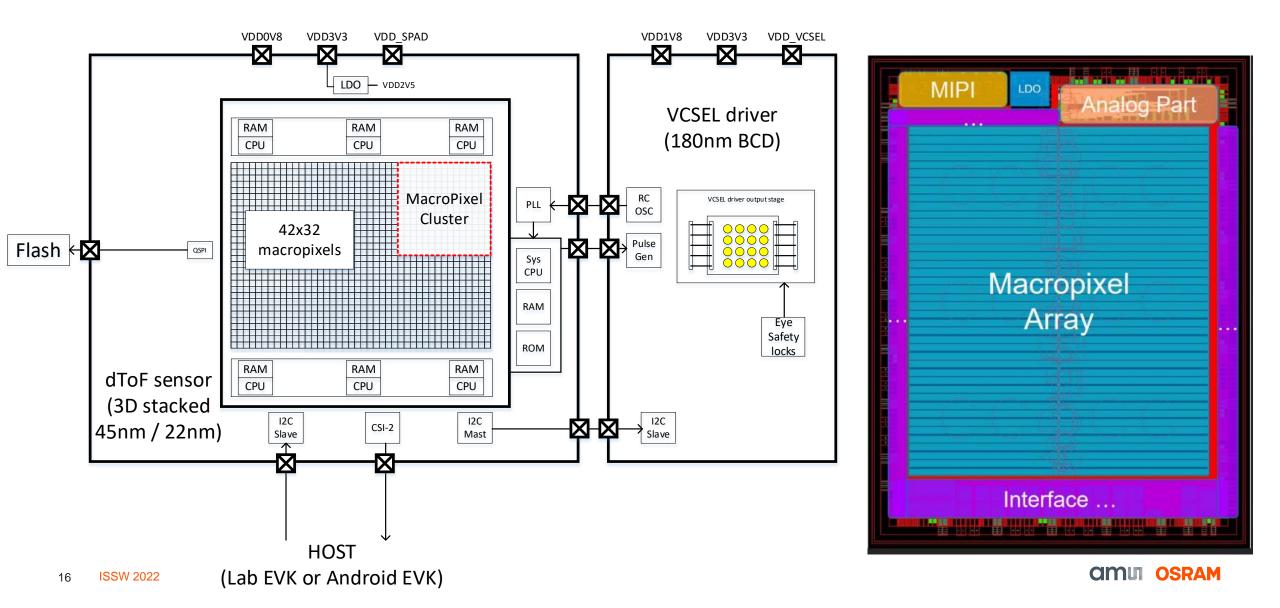
Camera | overview

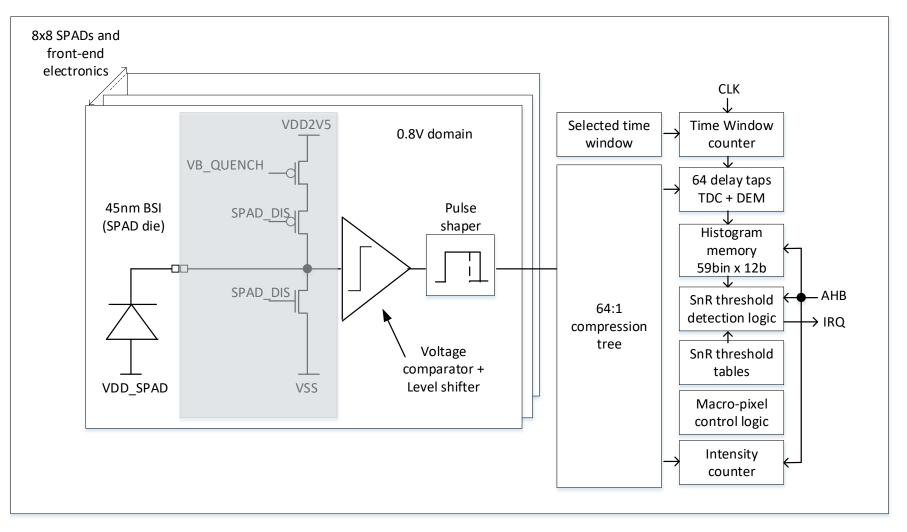
Specifications

Sensor IC

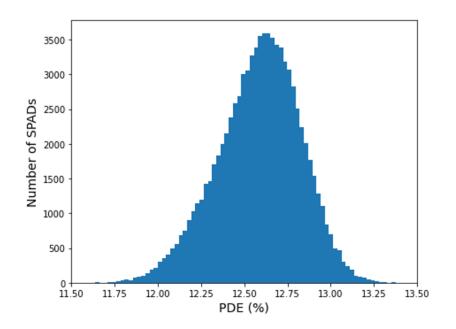

- QVGA SPAD array
 - 10µm pitch
 - >12% PDE, 940nm, 2V excess bias, room temperature
 - Configurable dead time
- 30 x 40 parallel operating TDCs
 - 59 bins per TDC
 - ~250ps .. 350ps configurable bin size
- On-chip histogram memory with 12bit bin counter and overflow counter
- Peak finding and sub-bin interpolation on 6 compute cluster MCUs
- Depth image data reconstruction, streaming, and system monitoring on system MCU

Imaging optics


- 49° x 62° field-of-view
- F/1.2
- 940nm optical narrow-band filter, system-optimized bandwidth

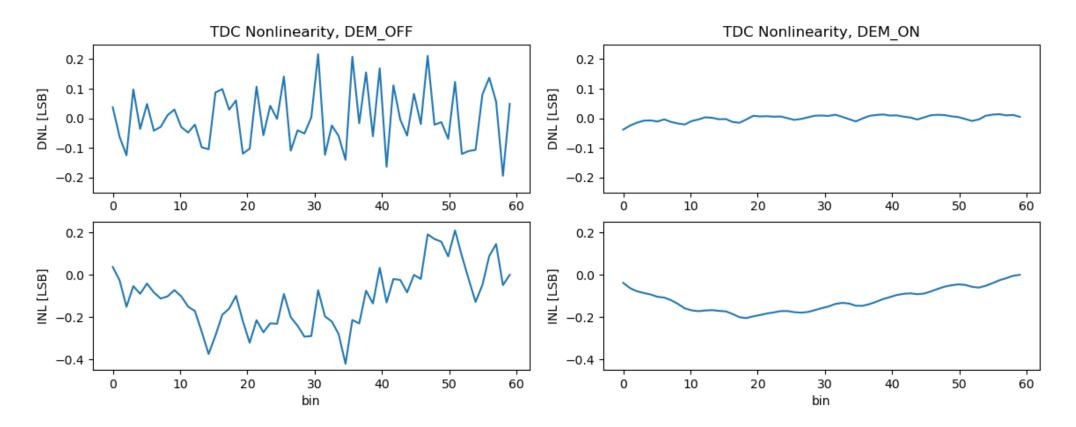

Camera | components and assembly

Camera | Sensor


Camera | Macro-Pixel

Camera | Photon Detection Efficiency

- Count rates determined in intensity image mode
- Excess bias voltage 2V
- Room temperature
- 940nm


Key Performance Indicator	Un it	Measured on test chip (*)	Measured on dToF chip
Pixel pitch	um	10.00	10.26
Breakdown voltage (25°C)	V	17.5	17.4-17.6
DCR (25°C)	cp s	0.8	<2
DCR (75°C)	cp s	250 @75°C	480 @Tj~78°C
PDE at 940nm (25°C), 2Vex	%	11	>12

(*) Refer to presentation from Georg Roehrer in ISSW22, 'A Back Side Illuminated 3D-Stacked SPAD in 45nm Technology' [4]

Camera | TDC non-linearity

Differential and integral nonlinearity, DEM enhancement

- Measured through optical path in ambient light
- Dynamic element matching (DEM) significantly improving performance

19 ISSW 2022

- 1. ams OSRAM overview
- 2. 3D sensing use cases
- 3. System
- 4. Camera
- 5. Laser
- 6. Firmware
- 7. Application
- 8. Performance results
- 9. Power results
- 10. Conclusion and thanks

Laser | overview

Specifications

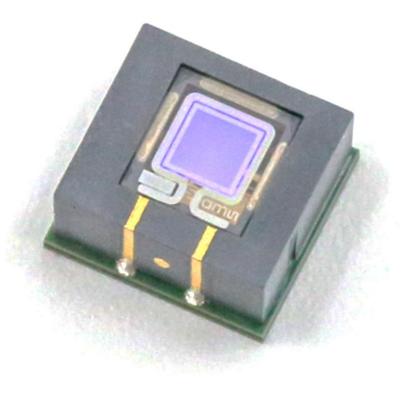
Module

• reflowable

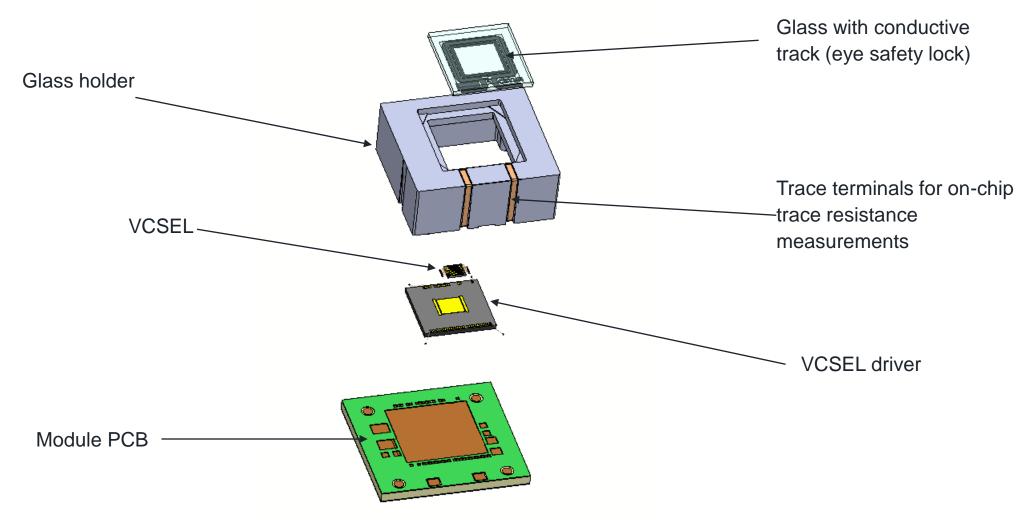
VCSEL driver

• 390ps pulse width (90% energy method)

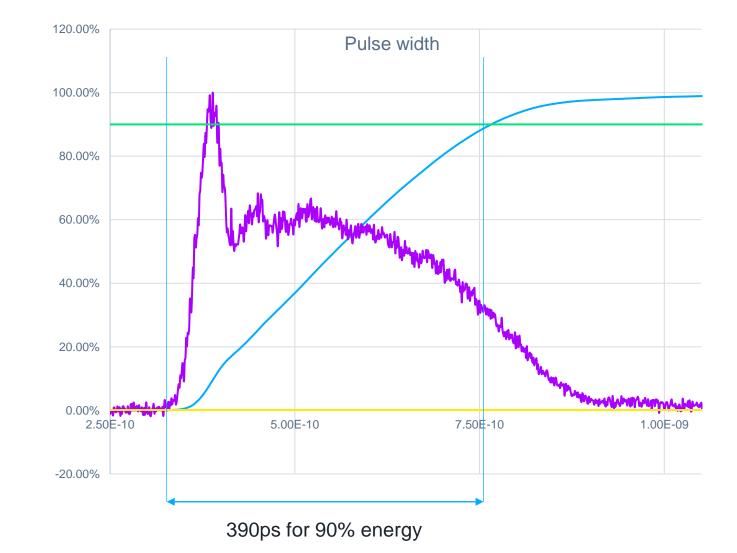
VCSEL array


• >60W optical peak power

Micro lens array

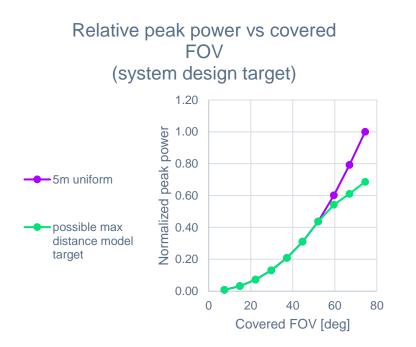

• optimized for dot illumination (patented)

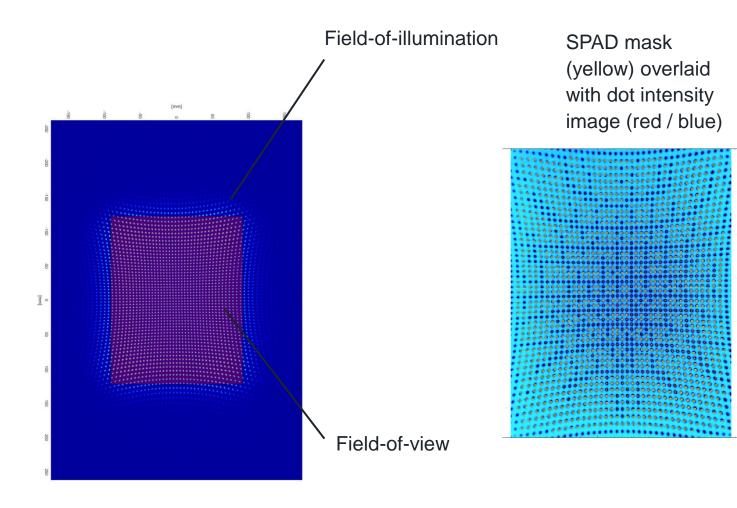
Eye safety features


- Resistive interlock in micro lens array
- Surveillance of average optical power by build-in photodiode
- Monitoring of module temperature
- Short circuit detection of output driver

Laser | components and assembly

Laser | pulse Sub-nanosecond pulse width

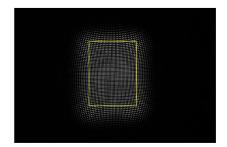


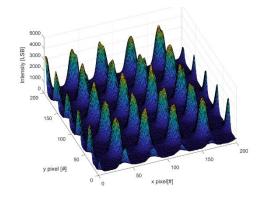

CALC OSRAM

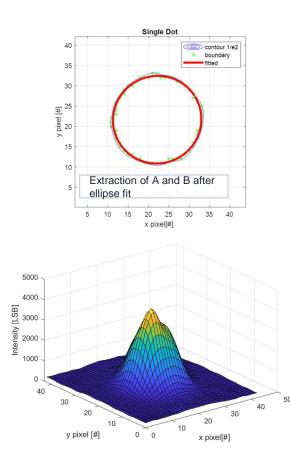
Laser | dot illumination

Power profile and optical alignment

- 1900 dots projected into focal plane
- SPAD array multiplexed to 1344 TDCs
- SPAD mask and DOT position stored to in flash after calibration

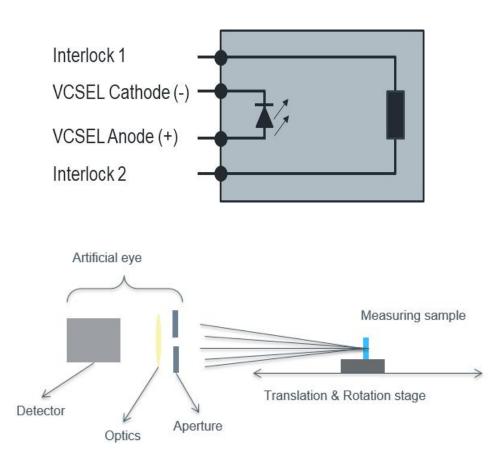





Laser | dot angular size and pitch

Dot angular size is critical to maximize peak optical power, increase signal-to-noise ratio and reduce number of activated spads

This has a triple effect in terms of power efficiency: increase the signal, reduce the ambient, and reduce the power consumption of the detector related to SPAD activity.



Laser | eye safety

Is covered by		Safety mechanism					
		VCSEL clock frequency detection	Average optical power monitoring	Interlock / lens detached detection	VCSEL driver power stage short detection		
Single fault	Too high VCSEL clock						
	frequency						
	Too wide pulse		\checkmark				
	Too high		2				
	average burst		V				
	optical power						
	Lens						
	detachment /			,			
	severe damage						
	Power driver						
	power stage				,		
	shortage						

- 1. ams OSRAM overview
- 2. 3D sensing use cases
- 3. System
- 4. Camera
- 5. Laser
- 6. Firmware
- 7. Application
- 8. Performance results
- 9. Power results
- 10. Conclusion and thanks

Firmware | overview

Specifications

Programming model

dToF control/configuration and status interface management

Calibration toolbox

• spad mask, dot center and depth offset calibration

Dataflow management

- Control of hardware to sequence operations
- Peak detection, Sub-bin interpolation, range map assembly (from various clusters of macro-pixels)

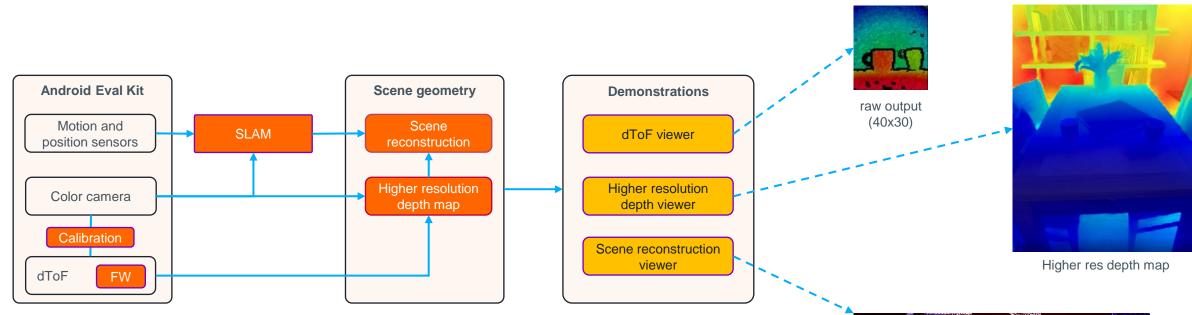
Power management

- Power state machine
- Sequencing and synchronization of laser emission bursts and SPAD quenching

VCSEL driver control

- Abstracted high-level laser operating modes
- Pulse driving conditions run-time adaptation (to optimize in large temperature range)

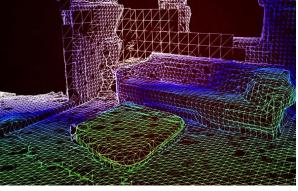
Eye safety


- Temperature monitoring and adaptation for temperature dependent monitors
- Laser safety error monitoring and reporting to host

- 1. ams OSRAM overview
- 2. 3D sensing use cases
- 3. System
- 4. Camera
- 5. Laser
- 6. Firmware
- 7. Application
- 8. Performance results
- 9. Power results
- 10. Conclusion and thanks

Application | 3d scene reconstruction

dTof sensor integrated in a RGBD system

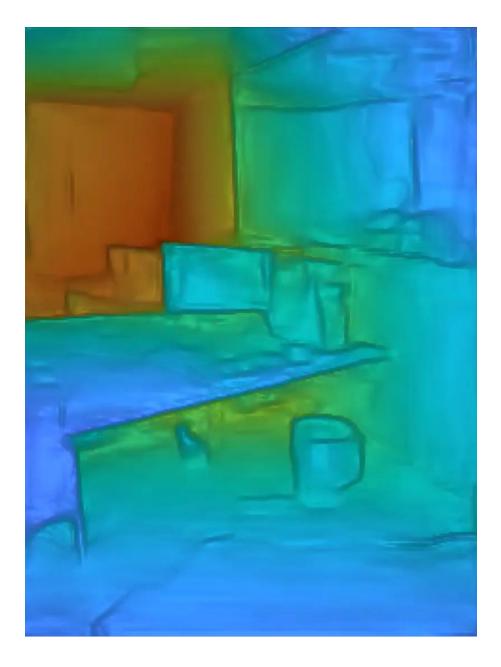


Ams OSRAM

- Firmware (including on-chip depth map computation)
- Calibration and SLAM
- Partner management, algorithm integration
- Demonstrations

Partners

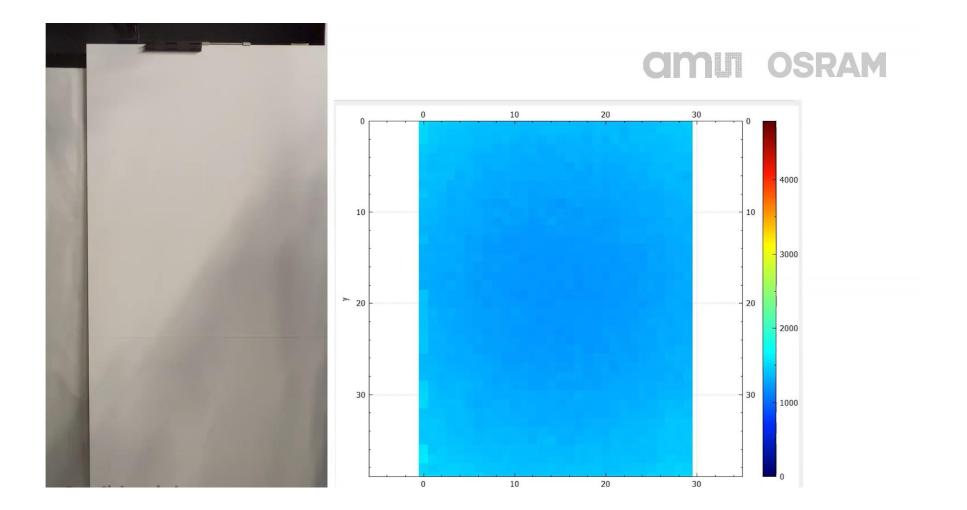
- Higher resolution depth map algorithm
- Scene reconstruction algorithm
- Demonstrations



Scene geometry (3D mesh)

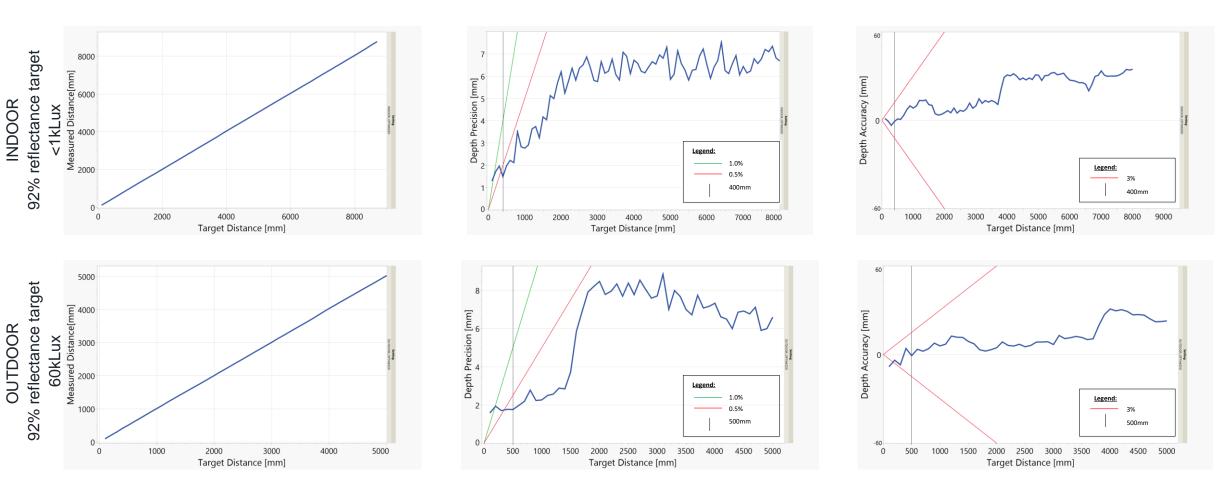
Application | depth fusion

Android application in action


Application 3d scene reconstruction

Android application in action

- 1. ams OSRAM overview
- 2. 3D sensing use cases
- 3. System
- 4. Camera
- 5. Laser
- 6. Firmware
- 7. Application
- 8. Performance results
- 9. Power results
- 10. Conclusion and thanks


Performance | max distance, accuracy and precision Test setup

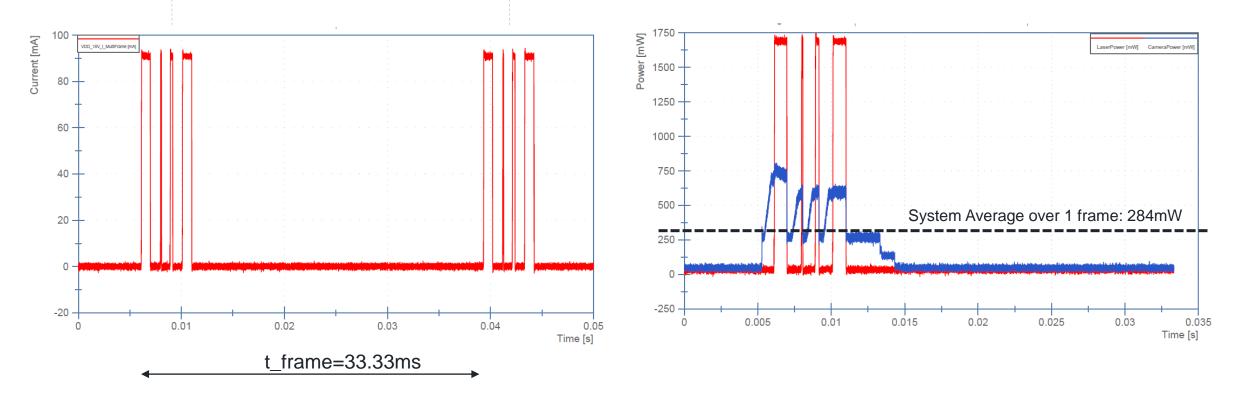
Performance | max distance, accuracy and precision

Precision and accuracy with white target

Note: only points with 99% of detected points in 4x4 ROI over 100 repetitions are represented on the graph

CALC OSRAM

35 IISW 2022


- 1. ams OSRAM overview
- 2. 3D sensing use cases
- 3. System
- 4. Camera
- 5. Laser
- 6. Firmware
- 7. Application
- 8. Performance results
- 9. Power results
- 10. Conclusion and thanks

Power | conditions, settings and measures

test mode	target reflectance	ambient light	max distance	frame rate	system power
OUTDOOR	92%	60kLux	5m	30fps	284mW
INDOOR	92%	<1kLux	8.2m	30fps	245mW
AF	18%	<1kLux	3.5m	10fps	109mW
AR_60FPS	18%	<1kLux	5m	60fps	342mW

Power I timing view

- 284mW power consumption @5m, 60kLux, 30fps
- Each peak is a burst of pulses with low-duty cycle (400ps/80ns)
- Possibility of reducing power in window W(0) with reduced precision requirement

- 1. ams OSRAM overview
- 2. 3D sensing use cases
- 3. System
- 4. Camera
- 5. Laser
- 6. Firmware
- 7. Application
- 8. Performance results
- 9. Power results
- **10. Conclusion and thanks**

Conclusion | acknowledgments

We have presented a full dToF modular system with less than **300mW** system power consumption.

Thanks to all the team involved in the project.

Special thanks to **David Stoppa** for initiating and setting the direction of this fantastic journey

In memory of Uli, sponsor of the project, who has been an inspired and inspiring leader

Kotaro Dusan Denny Pierre-Yves Jerome Edward Beatriz LIT-IVIIN Hiwa Uli Christian Javier Jeffrey Prashant Edo Georg Wai-Leong Khulan Cassandra Elitsa Orlando Sergio Stefan Nicola Michael Oliver Martin Ziqian Tereza Michael David Edoardo Yee-Mun Allan Pete Jeff Virag Juergen Philipp Andrea Kim-Leong Pandi Clement ravis Lawrence Alice Javier Bruno Alexia Rajesh Luna Clement Scott Ouentin Andre Sree Ioannis Ernst ^{Clement} Scott Quentin Ahmed Radek Cheng Gregor Qiang Iv Stefan Ivan Daniele Rene Daniel Pablo Francesco Robert Michael Azad Woei-Quan Lancha Preethi Kelvin

Q & A

Sensing is life

CALL OSRAM

appendix

Bibliography | references

[1] David Stoppa et al. / IISW21: "A Reconfigurable QVGA/Q3VGA Direct Time-of-Flight 3D Imaging System with On-chip Depth-map Computation in 45/40nm 3D-stacked BSI SPAD CMOS"

[2] Preethi Padmanabhan, Scott Lindner, Pierre-Yves Taloud, Nicola Rossi, and David Stoppa / IISW21: "Depth Precision in dToF Sensors for AR Applications"

[3] Georg Roehrer / ISSW22: "A Back Side Illuminated 3D-Stacked SPAD in 45nm Technology"

